Abstract of Workshop 2015 - Advances in DEA Theory and Applications with Extensions to Forecasting Models

نویسندگان

  • Joseph Paradi
  • D’Andre Wilson
  • Xiaopeng Yang
چکیده

of Workshop 2015 -Advances in DEA Theory and Applications with Extensions to Forecasting Models Date December 1 st -2 nd , 2015 Venue: Conference Room 4A, National Graduate Institute for Policy Studies (GRIPS) Workshop Organizer: Prof. Kaoru Tone, GRIPS December 1 st , 13:25-17:00 13:25-13:30 Opening Remarks: Prof. Kaoru Tone (GRIPS, Japan) 13:30-15:00 Session 1. Chair: Prof. Joseph Paradi (Univ. of Toronto, Canada) 1. “Resampling in Data Envelopment Analysis illustrated by a hospital example” Author: Kaoru Tone (GRIPS, Japan) Abstract: In this paper, we propose new resampling models in data envelopment analysis (DEA). Input/output values are subject to change for several reasons, e.g., measurement errors, hysteretic factors, arbitrariness and so on. Furthermore, these variations differ in their input/output items and their decision-making units (DMU). Hence, DEA efficiency scores need to be examined by considering these factors. Resampling based on these variations is necessary for gauging the confidence interval of DEA scores. We propose two resampling models. The first model utilizes historical data, e.g., past-present, for estimating data variations, imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci series). The second one deals with future prospects. This model aims at forecasting the future efficiency score and its confidence interval for each DMU. We applied our models to dataset composed of Japanese municipal hospitals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES

Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...

متن کامل

Evaluating the Performance of Forecasting Models for Portfolio Allocation Purposes with Generalized GRACH Method

Portfolio theory assumes that investors accept risk. This means thatin the equal rate of return on the two assets, the assets were chosenthat have a lower risk level. Modern portfolio theory is accepted byinvestors who believe that they are not cope with the market. Sothey keep many different types of securities in order to access theoptimum efficiency rate that is close to the rate of return o...

متن کامل

Behavioral Finance Models and Behavioral Biases in Stock Price Forecasting

Stock market is affected by news and information. If the stock market is not efficient, the reaction of stock price to news and information will place the stock market in overreaction and under-reaction states. Many models have been already presented by using different tools and techniques to forecast the stock market behavior. In this study, the reaction of stock price in the stock market was ...

متن کامل

Forecasting the Profitability in the Firms Listed in Tehran Stock Exchange Using Data Envelopment Analysis and Artificial Neural Network

Profitability as the most important factor in decision-making, has always been considered by stake­holders in the company's profitability. Also can be a basis for evaluating the performance of the managers. The ability to predict the profitability can be very useful to help decision-makers. That's why one of the most important issues is the expected profitability. The importance of these foreca...

متن کامل

Forecasting GDP Growth Using ANN Model with Genetic Algorithm

Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015